Alignment of New Mexico Watershed Watch Activities

to New Mexico Science Content Standards, Benchmarks, and Performance Standards

Strand	Benchmark	Performance Standard	NMWW Activity
Strand I: Scientific	9-12 Benchmark I:	1. Describe the essential components	*Students learn and use recognized
Thinking	Use accepted	of an investigation, including	protocols for data collection.
and	scientific	appropriate methodologies, proper	
Practice	methods to	equipment, and safety precautions.	*Students develop study questions
	collect, analyze,	2. Design and conduct scientific	and design investigations
	and observations	investigations that include:	concerning watersned issues.
	and to design	• testable hypotheses	
	and conduct	• controls and variables	
	scientific	• methods to collect, analyze,	*Students use motors to collect
	and	and interpret data	water quality data Students
	communicate	• results that address	analyze water samples using a
	results.	hypotheses being investigated	colorimeter DO winkler titration
		• predictions based on results	TDS and nH measurements.
		• re-evaluation of hypotheses	benthic macroinvertebrate
		and additional	sampling and sorting, erosion
		experimentation as necessary	control and revegetation work for
		• error analysis.	habitat improvement.
		3. Use appropriate technologies to	L.
		collect, analyze, and communicate	
		scientific data (e.g., computers,	*Students present data through
		A Convoy results of investigations	written papers and oral
		4. Convey results of investigations	presentations.
		methodologies and expressions	
		including.	
		• scientific language and	
		symbols	
		• diagrams charts and other	
		data displays	
		 mathematical expressions and 	
		processes (e.g. mean	
		median slope	*Students use principles of stream
		proportionality)	hydrology to explain physical
		 clear logical and concise 	conditions of stream.
		communication	
		 reasoned arguments 	
		5. Understand how scientific theories	
		are used to explain and predict	
		natural phenomena.	

Strand	Benchmark	Performance Standard	NMWW Activity
Strand I:	9-12	1. Understand how scientific	*Students present data for
Scientific	Benchmark II:	processes produce valid, reliable	public review.
and	scientific	results, including:	
Practice	processes	* consistency of explanations with	
	produce	data and observations	
	scientific	* openness to peer review	
	knowledge that	full disclosure and examination of	
	evaluated.	assumptions	
	validated,	* testability of hypotheses	
	revised, or	* repeatability of experiments and	
	rejected.	reproducibility of results.	*Students analyze data and
		2. Use scientific reasoning and valid	discuss previously held
		logic to recognize:	viewpoints or beliefs.
		* faulty logic	
		* cause and effect	*Students analyze published
		* the difference between observation	water quality data.
		and unsubstantiated inferences and	
		conclusions	*Students interpret data in
		* potential bias.	context of
		3. Understand how new data and	River Continuum Concept.
		observations can result in new	
		scientific knowledge.	*Students research and
		4. Critically analyze an accepted	discuss local, state, national
		explanation by reviewing current	and international watershed
		scientific knowledge.	issues.
		5. Examine investigations of current	
		interest in science (e.g.,	
		superconductivity, molecular	
		machines, age of the universe).	
		•	

Strand	Benchmark	Performance Standard	NMWW Activity
Strand I: Scientific Thinking and Practice	9-12 Benchmark III: Use mathematical concepts, principles, and expressions to analyze data, develop models, understand patterns and relationships, evaluate findings, and draw conclusions.	 1.Create multiple displays of data to analyze and explain the relationships in scientific investigations. 2. Use mathematical models to describe, explain, and predict natural phenomena. 3.Use technologies to quantify relationships in scientific hypotheses (e.g., calculators, computer spreadsheets and databases, graphing software, simulations, modeling). 4.Identify and apply measurement techniques and consider possible effects of measurement errors. 5.Use mathematics to express and establish scientific relationships (e.g., scientific notation, vectors, dimensional analysis). 	*Students calculate streamflow and relate to environmental factors in stream. *Students enter data on spreadsheets and create graphs. *Students examine patterns and relationships between water quality parameters. *Students calculate summary statistics.

Strand	Benchmark	Performance Standard	NMWW Activity
Strand II: The Content of Science Standard I (Physical Science)	9-12 Benchmark I: Understand the properties, underlying structure, and reactions of matter.	 Classify matter in a variety of ways (e.g., element, compound, mixture; solid, liquid, gas; acidic, basic, neutral). Identify, measure, and use a variety of physical and chemical properties (e.g., electrical conductivity, density, viscosity, chemical reactivity, pH, melting 	*Students learn concepts of conductivity and pH and relate to presence of ions or compounds in water. *Students conduct chemical and physical tests of stream including pH, conductivity, turbidity and temperature.
		point). 3. Describe how the rate of chemical reactions depends on many factors that include temperature, concentration, and the presence of catalysts.	*Students consider relationship between temperature and turbidity or temperature and dissolved oxygen.

Strand II: The Content of Science Standard9-12Ecosystems 1.Know that an ecosystem is complex and may exhibit fluctuations around a steady state or may evolve over time.*Students learn River Continuum Concept and apply to local study area.	Strand	Benchmark	Performance Standard	NMWW Activity
scienceand on complex interactions, including the cycling of matter and the flow of energy.2.Describe how organisms cooperate and compete in ecosystems (e.g., producers, decomposers, herbivores, carnivores, omnivores, predator-prey, symbiosis, mutualism).*Students study riparian habitat and food webs.3. Understand and describe how available resources limit the amount of life an ecosystem can support (e.g., energy, water, oxygen, nutrients).*Students study riparian habitat and food webs.4. Critically analyze how humans modify and change ecosystems (e.g., harvesting, pollution, population energy)*Students study human impacts on watershed.	Strand II: The Content of Science Standard II (Life Science)	9-12 Benchmark I: Understand how the survival of species depends on biodiversity and on complex interactions, including the cycling of matter and the flow of energy.	 Ecosystems 1.Know that an ecosystem is complex and may exhibit fluctuations around a steady state or may evolve over time. 2.Describe how organisms cooperate and compete in ecosystems (e.g., producers, decomposers, herbivores, carnivores, omnivores, predator-prey, symbiosis, mutualism). 3. Understand and describe how available resources limit the amount of life an ecosystem can support (e.g., energy, water, oxygen, nutrients). 4. Critically analyze how humans modify and change ecosystems (e.g., harvesting, pollution, population 	*Students learn River Continuum Concept and apply to local study area. *Students study riparian habitat and food webs. *Students analyze nutrient and dissolved oxygen levels in streams and learn concept of eutrophication. *Students study human impacts on watershed.

Strand	Benchmark	Performance Standard	NMWW Activity
Strand II: The Content of Science Standard II (Earth Science)	9-12 Benchmark II: Examine the scientific theories of the origin, structure, energy, and evolution of Earth and its atmosphere, and their interconnections.	 Geochemical Cycles 5. Know that Earth's system contains a fixed amount of natural resources that cycle among land, water, the atmosphere, and living things (e.g., carbon and nitrogen cycles, rock cycle, water cycle, ground water, aquifers). 	*Students learn and apply concepts of hydrologic cycle.

Strand	Benchmark	Performance Standard	NMWW Activity
Strand III: Science and Society Standard I: Understand how scientific discoveries, inventions, practices, and knowledge influence, and are influenced by, individuals and societies.	9-12 Benchmark I: Examine and analyze how scientific discoveries and their applications affect the world, and explain how societies influence scientific investigations and applications.	 9.Describe how scientific knowledge helps decision makers with local, national, and global challenges (e.g., Waste Isolation Pilot Project [WIPP], mining, drought, population growth, alternative energy, climate change). 12.Explain how societies can change ecosystems and how these changes can be reversible or irreversible. 13. Describe how environmental, economic, and political interests impact resource management and use in New Mexico. 	*Students examine local and state policy regarding watershed issues. *Students examine human-induced changes in watershed and human related stream impairments.